Classification of purely infinite graph algebra with finitely many ideals

KATSURA Takeshi(勝良健史)

Keio University (慶應義塾大学)

22nd / March / 2012 2012 Operator Algebras Program East China Normal University (華東師範大学), Shanghai, China

Ultimate Goal

Problem

Find a complete algebraic invaraiant for { separable, nuclear, purely infinite, stable C*-algebras with finitely many ideals }

No non-trivial ideal: K_0 and K_1 (Kirchberg, Phillips)

One non-trivial ideal: 6-term exact sequence (Rørdam)

How about Cuntz-Krieger algebras? graph algebras? real rank zero C*-alg?

References

```
[EKTW] Søren Eilers, Takeshi Katsura,
Mark Tomforde, and James West,
"The ranges of K-theoretic invariants
for non-simple graph algebras", preprint 2011.
```

[ABK] Sara Arklint, Rasmus Bentmann and Takeshi Katsura, "Reduction of filtered K-theory and a characterization of Cuntz-Krieger algebras", in preparation.

based on papers [Restorff], [Kirchberg], [Meyer-Nest], [Bentmann-Köhler], , , ,

Purely infinite C*-algebras

Definition

Fact

A: simple separable nuclear C^* -algebra A is purely infinite $\iff A \cong A \otimes O_{\infty}$

The same is true for separable nuclear C*-alg. with finitely many ideals (by Fact). In this talk "purely infinite" sometimes means the strictly stronger condition $A \cong A \otimes O_{\infty}$.

simple purely infinite C*-algebras

- ('77) Cuntz introduced Cuntz algebras O_n .
- ('78) Pimsner-Popa classified O_n up to isom by Ext
- ('80) Cuntz-Krieger introduced Cuntz-Krieger algebra O_A, and showed stable isom of O_A from flow equiv of SFT X_A
- ('84) Franks classified irreducible SFT X_A up to flow equiv by signed Bowen-Franks group
- ('95) Rørdam classified simple Cuntz-Krieger algebras O_A up to (stable) isom by K₀-groups
- ('95) Elliott-Rørdam classified the "classifiable class" of simple purely infinite C*-algebras up to isom by K-theory

Kirchberg algebras and UCT

Definition

Kirchberg algebra = simple, separable, purely infinite, nuclear C*-algebra

Theorem (Rosenberg-Schochet '87)

C*-algebra A in Bootstrap class

← A satisfies UCT for KK

= isomorphism of K-groups for A

Kirchberg-Phillips classification

Theorem (Kirchberg, Phillips '00)

Kirchberg algebras in Bootstrap class are classified up to stable isomorphism by K_0 -groups and K_1 -groups.

and up to isomorphism by K_0 -groups and K_1 -groups and the position of the unit.

range of invariants:

all pairs of countable abelian groups
(Elliott-Rørdam '95)

non-simple purely infinite C*-algebras

- ('80) Cuntz-Krieger showed stable isom of O_A from flow equiv of SFT X_A
- ('95) Huang classified some of O_A up to isom by filtered Bowen-Franks group
- ('97) Rørdam classified purely infinite
 C*-algebras with one ideal up to stable isom
 by 6-term sequence of K-groups
- ('03) Boyle-Huang introduced K-web
- ('06) Restorff classified O_A up to stable isom by filtered K-theory
- ('08) Eilers-Restorff²-Ruiz classified purely infinite C*-algebras with one ideal up to isom by 6-term sequence of K-groups with "unit"

C*-algebras over topological spaces

X: topological space (finite, T_0)

Definition (Meyer-Nest '08)

 C^* -algebra over $X = C^*$ -algebra A& continuous map ψ : Prim(A) $\rightarrow X$ Such A is tight if ψ is a homeomorphism

Prim(A) = the primitive ideal space of A $\mathbb{LC}(X) := \{ \text{locally closed subsets of } X \}$

 $U \in \mathbb{LC}(X)$ open $\rightsquigarrow A(U) \triangleleft A$

 $Y \in \mathbb{LC}(X) \rightsquigarrow Y = U \setminus V \text{ for open } V \subset U$ $\rightsquigarrow A(Y) := A(U)/A(V)$

(A(Y)) does not depend on the choices of U, V

K-web (=filtrated (filtered) K-theory)

$$Y \in \mathbb{LC}(X) \text{ and } Z \subset Y \text{ open } \rightsquigarrow Z, Y \setminus Z \in \mathbb{LC}(X)$$
 $\rightsquigarrow 0 \longrightarrow A(Z) \longrightarrow A(Y) \longrightarrow A(Y \setminus Z) \longrightarrow 0$
 $\rightsquigarrow K_0(A(Z)) \xrightarrow{i} K_0(A(Y)) \xrightarrow{r} K_0(A(Y \setminus Z))$
 $\downarrow \delta \qquad \qquad \downarrow \delta$

concrete and abstract K-webs

X: topological space (finite, T_0)

Definition

A: C*-algebra over X

$$K_X(A) := (K_*(A(Y))_{Y \in \mathbb{LC}(X)}, (i, r, \delta))$$

Meyer-Nest considered categories and natural transformations to get an abstract K-web:

$$\mathit{K}^{\mathsf{MN}}_{\mathit{X}}(\mathit{A}) = \big(\mathit{K}_{*}(\mathit{A}(\mathit{Y}))_{\mathit{Y} \in \mathbb{LC}(\mathit{X})}, (\text{"natural maps"})\big)$$

Problem

$$K_X^{\mathsf{MN}}(A) \stackrel{?}{=} K_X(A)$$

Kirchberg X-algebra

X: topological space

Definition

Kirchberg X-algebras = tight, separable, nuclear, purely infinite C*-algebras over X

Theorem (Kirchberg '00)

A, B: Kirchberg X-algebrasA and B are stably isomorphic over X← A and B are KK(X)-equivalent

Universal Coefficient Theorem

Definition (Meyer-Nest '09)

C*-algebra A over X satisfies UCT for X" \iff " KK(X)-equivalence for A= isomorphism of abs. K-web $K_X^{MN}(A)$

Theorem (Meyer-Nest '09, Bentmann-Köhler '11)

For a finite T_0 space X, TFAE:

- **1** A in Bootstrap class for $X \Rightarrow A$: UCT for X
- The class of stable Kirchberg X-algebras in Bootstrap class is classified by $K_X^{MN}(-)$
- X is a disjoint union of "accordion spaces"

finite T₀ space

X: a finite set

$$\{\mathsf{T}_0\text{-topologies on }X\} \overset{1:1}{\longleftrightarrow} \{\mathsf{partial orders on }X\}$$

 $\overline{\{x\}} \subset \overline{\{y\}} \iff x \leq y$

a partial order on X can be visualized by drawing arrow from y to xif x < y and no z satisfies x < z < y

remarks on [MN] and [BK]

Theorem (Meyer-Nest '09, Bentmann-Köhler '11)

For a finite T_0 space X, TFAE:

- The class of stable Kirchberg X-algebras in Bootstrap class is classified by $K_x^{MN}(-)$
- X is a disjoint union of "accordion spaces"

$$K_X^{MN}(A) = K_X(A)$$
 for accordion space X (Bentmann-Köhler '11)

For X not a disjoint union of accordion space, $K_X^{MN}(-)$ (and $K_X(-)$) is not a complete invariant.

Problem

Find invariants ($\supset K_{\mathsf{x}}^{\mathsf{MN}}(-)$) and show UCT.

Restorff's theorem

Theorem (Restorff)

The class of Cuntz-Krieger algebras O_A are classified up to stable isom by a part of K-web.

Proof uses results on dynamical systems.

Problem

Give C*-algebraic proof.

How about purely infinite graph algebras?

How about more general purely infinite C*-alg?

Graph algebras

Definition

$$E = (E^0, E^1, s, r)$$
: (directed) graph $\iff E^0, E^1$: countable sets $s, r: E^1 \to E^0$

Definition

A graph algebra $C^*(E)$ is generated by pairwise \bot projections $\{p_v\}_{v \in E^0}$ and partial isometries $\{s_e\}_{e \in E^1}$ with \bot ranges s.t.

- $ullet s_e^* s_e =
 ho_{s(e)}, \quad s_e s_e^* \le
 ho_{r(e)}$
- $p_v = \sum_{e \in r^{-1}(v)} s_e s_e^* \text{ if } 0 < |r^{-1}(v)| < \infty$

K-web of graph algebras

E: graph with Condition (K)

Set $A := C^*(E)$ and X := Prim(A).

 \exists description of X and concrete K-web $K_X(A)$ in terms of graph E

 $K_X(A)$ satisfies

- all $K_1(A(Y))$ is free for all $Y \in L\mathbb{C}(X)$,
- $δ: K_0(A(Y \setminus Z)) → K_1(A(Z)) \text{ is zero}$ for all Y ∈ LC(X) and Z ⊂ Y open.

Definition

We say $K_X(A)$ is graph-like if it satisfies the two conditions above.

Classification of purely infinite graph alg.

Theorem (Arklint-Bentmann-Katsura)

X: accordion space

Every Kirchberg X-algebras with graph-like K-web is stably isomorphic to graph algebras.

Theorem (ABK)

X: accordion space

A C*-algebra A is isomorphic to a Cuntz-Krieger algebra whose primitive ideal space is X

← A is a unital Kirchberg X-algebra with Cuntz-Krieger-like K-web.

Both Thms may hold for all finite T₀ space X

Proof of main theorem of [ABK]

X: accordion space

Theorem (Arklint-Bentmann-Katsura)

Every Kirchberg X-algebras with graph-like K-web is stably isomorphic to graph algebras.

This follows from

Theorem (K + MN + BK)

Kirchberg X-algebras are classified up to stable isom by $K_X(-)$

Theorem (ABK)

If $K_X(A)$ is graph-like, then \exists graph E s.t. $C^*(E)$ is a Kirchberg X-algebra with $K_X(C^*(E)) \cong K_X(A)$

Construction of graph in [ABK]

X: accordion space (or more generally BDP space)

Theorem (ABK)

If $K_X(A)$ is graph-like, then \exists graph E s.t. $C^*(E)$ is a Kirchberg X-algebra with $K_X(C^*(E)) \cong K_X(A)$

This follows from

Proposition (ABK)

If $K_X(A)$ is graph-like, then $K_X(A)$ is recovered from a part of $K_X(A)$ (as in Restorff's result).

and the main theorem of [EKTW]

Main theorem of [EKTW]

Theorem (Eilers-Katsura-Tomforde-West)

For an exact sequence
$$\mathcal{E}: G_1 \longrightarrow G_2 \longrightarrow G_3$$

$$\uparrow \qquad \qquad \downarrow_0$$

$$F_3 \longleftarrow F_2 \longleftarrow F_1$$

with free F_i ,

∃ graph algebra A with an ideal I s.t. 6-term sequence of K-groups for I ⊂ A is isomorphic to ε

We can control the graphs for I, A/I as well as the position of unit (if it exists).