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Ultimate Goal

Problem
Find a complete algebraic invaraiant for
{ separable, nuclear, purely infinite, stable
C*-algebras with finitely many ideals }

No non-trivial ideal: Ko and Ky (Kirchberg, Phillips)

One non-trivial ideal: 6-term exact sequence
(Rerdam)

How about Cuntz-Krieger algebras?
graph algebras? real rank zero C*-alg?

Takeshi (0 O) Katsura (0 0O) Classification of purely inf. graph algebras with fin. many ideals



References

[EKTW] Seren Eilers, Takeshi Katsura,
Mark Tomforde, and James West,
“The ranges of K-theoretic invariants
for non-simple graph algebras”, preprint 2011.

[ABK] Sara Arklint, Rasmus Bentmann
and Takeshi Katsura,
“Reduction of filtered K-theory and
a characterization of Cuntz-Krieger algebras”,
in preparation.

based on papers [Restorff], [Kirchberg],
[Meyer-Nest], [Bentmann-Ko6hler], , , ,

Takeshi (0 O) Katsura (0 0O) Classification of purely inf. graph algebras with fin. many ideals



Purely infinite C*-algebras

A C*-algebra A is purely infinite
&= every non-zero positive element
in A is properly infinite

Fact
A: simple separable nuclear C*-algebra
A is purely infinite < A =2=A ®0,

The same is true for separable nuclear C*-alg.
with finitely many ideals (by Fact).
In this talk “purely infinite” sometimes means
the strictly stronger condition A = A ® O...
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simple purely infinite C*-algebras

@ ('77) Cuntz introduced Cuntz algebras O,,.

@ ('78) Pimsner-Popa classified O, up to isom
by Ext

@ ('80) Cuntz-Krieger introduced Cuntz-Krieger
algebra Op, and showed stable isom of Op
from flow equiv of SFT Xa

@ ('84) Franks classified irreducible SFT X, up
to flow equiv by signed Bowen-Franks group

@ ('95) Rgrdam classified simple Cuntz-Krieger
algebras Oa up to (stable) isom by Kg-groups

@ ('95) Elliott-Regrdam classified the “classifiable
class” of simple purely infinite C*-algebras up
to isom by K-theory
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Kirchberg algebras and UCT

Kirchberg algebra = simple, separable,
purely infinite, nuclear C*-algebra

Theorem (Rosenberg-Schochet '87)

C*-algebra A in Bootstrap class
< A satisfies UCT for KK
< KK-equivalence for A
= isomorphism of K-groups for A
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Kirchberg-Phillips classification

Theorem (Kirchberg, Phillips '00)

Kirchberg algebras in Bootstrap class are
classified up to stable isomorphism
by Ko-groups and K;-groups.

and up to isomorphism
by Ko-groups and K;-groups
and the position of the unit.

range of invariants:
all pairs of countable abelian groups
(Elliott-Rgrdam '95)
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non-simple purely infinite C*-algebras

@ ('80) Cuntz-Krieger showed stable isom of Op
from flow equiv of SFT Xa

@ ('95) Huang classified some of O up to isom
by filtered Bowen-Franks group

@ ('97) Rgrdam classified purely infinite
C*-algebras with one ideal up to stable isom
by 6-term sequence of K-groups

@ ('03) Boyle-Huang introduced K-web

@ ('06) Restorff classified Oa up to stable isom
by filtered K-theory

@ ('08) Eilers-Restorff2-Ruiz classified purely
infinite C*-algebras with one ideal up to isom
by 6-term sequence of K-groups with “unit”

Takeshi (0 O) Katsura (0 0O) Classification of purely inf. graph algebras with fin. many ideals



C*-algebras over topological spaces

X: topological space (finite, Tg)
Definition (Meyer-Nest '08)

C*-algebra over X = C*-algebra A
& continuous map ¢ : Prim(A) — X
Such A is tight if i is a homeomorphism

Prim(A) = the primitive ideal space of A

LC(X) := {locally closed subsets of X}
U € LC(X) open ~» A(U) <A
Y e LC(X) » Y =U\V foropenV c U
~ A(Y) :=A(U)/A(V)
(A(Y) does not depend on the choices of U, V)
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K-web (=filtrated (filtered) K-theory)

Y e LC(X)and Z Cc Y open w Z,Y \ Z € LC(X)

~w 0—A(Z) —A(Y)—A(Y\Z)—0

w - Ko(A(Z)) ——Ko(A(Y)) —= Ko(A(Y \ 2))

o| s

Ki(A(Y \ Z))—Ki(A(Y))——Ky(A(2))
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concrete and abstract K-webs

X: topological space (finite, To)

Definition

A: C*-algebra over X

Kx(A) := (K(A(Y))vereq- (i.1.6))
concrete K-web

Meyer-Nest considered categories and natural
transformations to get an abstract K-web:

K&M(A) = (K.(A(Y))yercrx)- (“natural maps”))

Problem
?
KYN(A) = Kx(A)
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Kirchberg X-algebra

X: topological space

Kirchberg X-algebras = tight, separable, nuclear,
purely infinite C*-algebras over X

Theorem (Kirchberg '00)

A, B: Kirchberg X-algebras
A and B are stably isomorphic over X
< A and B are KK (X)-equivalent
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Universal Coefficient Theorem

Definition (Meyer-Nest '09)
C*-algebra A over X satisfies UCT for X
“ < " KK(X)-equivalence for A

= isomorphism of abs. K-web K}N(A)

Theorem (Meyer-Nest '09, Bentmann-Kohler "11)

For a finite Ty space X, TFAE:
@ A in Bootstrap class for X = A: UCT for X

@ The class of stable Kirchberg X-algebras in
Bootstrap class is classified by KQ"N(—)

@ X is a disjoint union of “accordion spaces”
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finite T ¢ space

X: afinite set
. 1:1 .
{To-topologies on X} « {partial orders on X}
x}cly} & x<y
a partial order on X can be visualized

by drawing arrow from y to x
if x <y and no z satisflesx <z <y
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remarks on [MN] and [BK]

Theorem (Meyer-Nest '09, Bentmann-Kdohler *11)

For a finite To space X, TFAE:

@ The class of stable Kirchberg X-algebras in
Bootstrap class is classified by K}N(-)

@ X is a disjoint union of “accordion spaces”
KMN(A) = Kx(A) for accordion space X
(Bentmann-Kohler '11)

For X not a disjoint union of accordion space,
KMN(-) (and Kx(-)) is not a complete invariant.

Problem
Find invariants (> K}™™(-)) and show UCT.
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Restorff’'s theorem

Theorem (Restorff)

The class of Cuntz-Krieger algebras O, are
classified up to stable isom by a part of K-web.

Proof uses results on dynamical systems.

Problem
Give C*-algebraic proof.

How about purely infinite graph algebras?
How about more general purely infinite C*-alg?
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Graph algebras

E = (E°% E*, s,r): (directed) graph
& EO° E!: countable sets
s,r: E! - E°

A graph algebra C*(E) is generated
by pairwise L projections {py }ycec and
partial isometries {Se}ecg: With L ranges s.t.

Q SiSe = Psie)r  SeSi < Pre)
@ pv = Jear1v)SeSs if 0 <[rH(v)| < oo
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K-web of graph algebras

E: graph with Condition (K)
Set A := C*(E) and X := Prim(A).
1 description of X and concrete K-web Ky (A)
in terms of graph E
Kx(A) satisfies
Q allKi(A(Y)) isfree for all Y € LC(X),

Q 6:Ko(A(Y \2Z)) - Ky (A(2Z)) is zero
forallY e LC(X)and Z C Y open.

Definition
We say Ky (A) is graph-like
if it satisfies the two conditions above.
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Classification of purely infinite graph alg.

Theorem (Arklint-Bentmann-Katsura)

X: accordion space
Every Kirchberg X-algebras with graph-like K-web
Is stably isomorphic to graph algebras.

Theorem (ABK)
X: accordion space
A C*-algebra A is isomorphic to a Cuntz-Krieger
algebra whose primitive ideal space is X
<= A is a unital Kirchberg X-algebra
with Cuntz-Krieger-like K-web.

Both Thms may hold for all finite T, space X
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Proof of main theorem of [ABK]

X: accordion space

Theorem (Arklint-Bentmann-Katsura)

Every Kirchberg X-algebras with graph-like K-web
Is stably isomorphic to graph algebras.

This follows from

Theorem (K + MN + BK)

Kirchberg X-algebras are classified
up to stable isom by Ky (-)

Theorem (ABK)

If Kx (A) is graph-like, then 3 graph E s.t. C*(E) is
a Kirchberg X-algebra with Kx (C*(E)) = Kx(A)
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Construction of graph in [ABK]

X: accordion space
(or more generally BDP space)

Theorem (ABK)

If Kx (A) is graph-like, then 9 graph E s.t. C*(E) is
a Kirchberg X-algebra with Kx (C*(E)) = Kx(A)

This follows from
Proposition (ABK)

If Kx(A) is graph-like, then Ky (A) is recovered
from a part of Kx(A) (as in Restorff’s result).

and the main theorem of [EKTW]
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Main theorem of [EKTW]

Theorem (Eilers-Katsura-Tomforde-West)

For an exact sequence & G; — G, ——G3

| I

F3 < F2 Fl

with free F;,
d graph algebra A with an ideal |
s.t. 6-term sequence of K-groups for | C A
Is isomorphic to &

We can control the graphs for I, A/l
as well as the position of unit (if it exists).
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